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Nonperturbative “Lattice Perturbation Theory”∗
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We discuss a program for replacing standard perturbative methods with Monte Carlo simulations in short

distance lattice gauge theory calculations.

In principle, perturbation theory is unnecessary
to solve QCD with lattice methods. Even the
short distance calculations relating the lattice ac-
tion to continuum actions could in principle be
done by a → 0, V → ∞ brute force Monte Carlo
calculations. In practise, perturbation theory has
been essential to the progress of lattice methods.
It is much easier and more powerful than Monte
Carlo for some purposes:

• The a → 0, V → ∞ limits are much easier
to take in perturbative calculations.

• The values of perturbative coefficients can
be calculated much more accurately than
typical quantities in numerical calculations.

• When short distance quantities can be
computed with very different calculational
methods, such as perturbation theory and
Monte Carlo simulation, confidence is bol-
stered in both methods.

In this talk, we will reexamine the question
of when it may be advantageous and feasible to
do “Feynman diagrams” nonperturbatively. An
important motivation for reexamining methods
for perturbative calculations now is the increas-
ing understanding and use of improved actions.
O(a) improved actions for Wilson fermions are
known to be crucial for calculating some quanti-
ties (such as the hyperfine splitting in quarkonium
systems). They may be important for many more
quantities. The perturbation theory for O(a) im-
proved actions is much harder than the perturba-
tion theory for unimproved actions (already hard
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enough), but still tractable. Most of the most
important calculations for this action are in the
process of being done.

The frontier in the practical application of im-
proved action is O(a2) improvement. For exam-
ple, in Lepage’s talk at this conference, he showed
that a mean-field improved Weisz action[1] (the
pure gauge action constructed from plaquettes
and flat six-link loops) plus the improved fermion
action of NRQCD[2] is capable of calculating the
charmonium spectrum correctly to a few per cent,
even at lattice spacings as large as a−1

∼ 400
MeV. Even if the program to perform spectrum
calculations with improved actions is very suc-
cessful, that is only part of the total program for
lattice QCD. Extraction of decay constants, form
factors and quark masses requires short distance
calculations which have been done with pertur-
bative methods. The action and Feynman rules
for this action are much, much more complicated
than those for the unimproved theory. Redoing
all existing perturbative calculations with this ac-
tion will be terribly complicated, even with large
increases in the amount of work devoted to per-
turbative calculations. The job would be more
difficult than the job of redoing all of the simula-
tion programs for the new action.

An even more extreme example is the “perfect
action”.[3] Classical corrections to the action are
much more tractable than quantum corrections.
They can be done more or less “perfectly”, but
at the cost of adding many additional terms to
the action. The work required for deriving Feyn-
man rules and performing perturbative calcula-
tions with such an action is hard to imagine.
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The purpose of this talk is to ask whether it
is possible to perform short distance calculations
without deriving Feynman rules and doing Dirac
and Lorentz algebra. There are several possible
goals of short distance Monte Carlo calculations.
One, which is not the subject of this talk but
which is potentially more important, is the search
for nonperturbative effects at short distances. For
example, the expectation value of the plaquette is
expected to have, in addition to its expansion in
powers of g2, nonperturbative effects which fall
off as some power of the lattice spacing. The
condensate picture of short distance nonpertur-
bative effects suggests that this power is four, the
dimension of the operator F 2

µν
. Little is known

from first principles, however. This subject is 1)
hugely important, and 2) not the subject of this
talk.

The questions addressed by this talk are more
modest. What are the coefficients of the powers of
g2 in the perturbative expansion? To what extent
can we find methods to test perturbation theory
where we can use conventional methods, and to
replace perturbation theory where we cannot? In
cases where the correct perturbative coefficient is
known, can we use nonperturbative methods to

• recalculate the first order coefficient cor-
rectly?

• bound or estimate the O(α2), O(α3), . . . co-
efficients correctly?

• redo the calculation with ten times as com-
plicated an action?

Some short distance nonperturbative calcu-
lations are easier than others. For example,
much may be learned about the extraction of αs

from nonperturbatively calculated short distance
quantities with relatively simple calculations.[4]
Other quantities, such as operator normalizations
and quark mass extractions, are more compli-
cated. As an illustrative example, we will con-
sider one of the more difficult quantities, extract-
ing the quark mass from nonperturbative short
distance calculations. The goal will be to de-
termine numerically the coefficients of the first
power or two in αs for a given value of the quark

mass in lattice units, with the idea of using the
coefficients in the way that normal perturbative
results for the same value of ma would be used in
phenomenological calculations. (Perturbative co-
efficients are explicit functions of the quark mass
when one is not in the limit am → 0.) We will
do this by performing a Monte Carlo simulation
with very small lattice spacing, fixing the gauge,
creating a quark propagator with wall source and
sink, and calculating an effective (pole) mass for
the quark in the usual way.

There are several problems which arise in this
calculation. They are mostly associated in one
way or another with the limiting procedure. The
nice limit for perturbative calculations is the limit
V → ∞, followed by g2

→ 0. But Monte Carlo
calculations (on noninfinite computers) require V
finite, while we would still like g2

→ 0. This is a
complicated limit for the theory. In particular, as
the quark mass in lattice units becomes small, we
do not have the desirable property am >> 1/L
(where a is the lattice spacing, m is the quark
mass, and L is the box size in lattice units).

One problem is the effect of tunneling between
the (81) Z3 vacua of the gauge theory. Quarks
have energies of order 1/L in nontrivial vacua.
Only in the trivial vacuum do these not domi-
nate the O(g2) correction unless L → ∞. Only
the trivial vacuum part of the path integral corre-
sponds to the usual perturbative momentum sum.

Even in the trivial vacuum, zero modes give
a contribution to the quark mass which vanishes
only in the large volume limit. Dimensional anal-
ysis suggests that this effect also goes like 1/L.
These effects must be calculated. They are espe-
cially important for light quarks.

Gauge dependence is an additional problem.
The pole mass is gauge invariant, but infrared
sensitive gauges may have problems. Axial
gauges are famously IR sensitive. Landau gauge
(and Feynman and other covariant gauges) have
gauge dependent infrared logarithms in their
wave function renormalizations. They therefore
have no isolated poles, but have branchcuts in-
stead. Among the commonly used gauges in
Monte Carlo simulations, only Coulomb gauges
(where an initial gauge fixing to A0 = 0 gauge
fixes the time direction gauge freedom) has no
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Figure 1. Effective mass plot for Wilson quarks
in three different gauges compared with tree level
and first order perturbation theory.

known infrared problems. An additional infrared
healthy gauge (perhaps Yennie gauge) would be
desirable in our calculations to test gauge depen-
dence.

Bearing in mind these complications, which are
not all understood and which may limit the ap-
plicability of the approach, we will now ask if
a Monte Carlo determination of the quark mass
correction if feasible. We perform a simulation
with periodic quark boundary conditions (N.B.),
at β = 60.0, and at large volume, 203

×32, to limit
tunneling. Fig. 1 shows an effective mass plot
for Wilson fermions calculated by Monte Carlo
methods in the three gauges mentioned above,
and compared with tree-level and one-loop per-
turbation theory. The gauges with infrared prob-
lems (axial and Landau) do not agree well with
one-loop perturbation theory, but the Coulomb
gauge results do agree. Fig. 2 shows that the
same is true for nonrelativistic fermions.

The next practical calculations to be addressed
include the calculation of the second order ad-
ditive mass renormalizations for NRQCD and
Wilson fermions, and the first order additive
mass renormalizations for O(a2) improved ac-
tions. Questions of principle which remain to be
fully addressed include the effects of boundary
conditions, gauge dependence, and zero modes.

Summary:
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Figure 2. Effective mass plot for nonrelativistic
quarks in three different gauges compared with
first order perturbation theory.

• Conventional perturbative calculations get
harder faster than Monte Carlo calculations
as the action gets more complicated.

• a2 corrected actions will be terribly compli-
cated for perturbation theory.

• Brute force evaluation of quark-gluon
Green’s functions is clearly possible in prin-
ciple.

• Brute force evaluation of quark-gluon
Green’s functions may also be of practical
importance if various complications can be
understood.

ACKNOWLEDGMENTS. We thank Pierre
van Baal, Aida El-Khadra, Bart Mertens, and
Andreas Kronfeld for discussions. Fermilab is op-
erated by Universities Research Association, Inc.
under contract with the U.S. Department of En-
ergy.

REFERENCES

1. P. Weisz, Nuc. Phys. B212 (1983) 1.
2. M. Alford, W. Dimm, G. P. Lepage, G. Hock-

ney, and P. B. Mackenzie, in these proceed-
ings.

3. A. Hasenfratz, in these proceedings.
4. G.P.Lepage and P.B.Mackenzie, Phys. Rev.

D48 (1993) 2250.


